64 research outputs found

    Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit

    Full text link
    We present the design and implementation of a highly compact femtosecond electron diffractometer working at electron energies up to 100 keV. We use a multi-body particle tracing code to simulate electron bunch propagation through the setup and to calculate pulse durations at the sample position. Our simulations show that electron bunches containing few thousands of electrons per bunch are only weakly broadened by space-charge effects and their pulse duration is thus close to the one of a single-electron wavepacket. With our compact setup we can create electron bunches containing up to 5000 electrons with a pulse duration below 100 femtoseconds on the sample. We use the diffractometer to track the energy transfer from photoexcited electrons to the lattice in a thin film of titanium. This process takes place on the timescale of few-hundred femtoseconds and a fully equilibrated state is reached within one picosecond.Comment: 5 pages, 3 figure

    Femtosecond electrons probing currents and atomic structure in nanomaterials

    Get PDF
    The investigation of ultrafast electronic and structural dynamics in low-dimensional systems like nanowires and two-dimensional materials requires femtosecond probes providing high spatial resolution and strong interaction with small volume samples. Low-energy electrons exhibit large scattering cross sections and high sensitivity to electric fields, but their pronounced dispersion during propagation in vacuum so far prevented their use as femtosecond probe pulses in time-resolved experiments. Employing a laser-triggered point-like source of either divergent or collimated electron wave packets, we developed a hybrid approach for femtosecond point projection microscopy and femtosecond low-energy electron diffraction. We investigate ultrafast electric currents in nanowires with sub-100 femtosecond temporal and few 10 nm spatial resolutions and demonstrate the potential of our approach for studying structural dynamics in crystalline single-layer materials.Comment: 18 pages, 4 figures, includes 8 pages supplementary informatio

    Symmetry-guided nonrigid registration: the case for distortion correction in multidimensional photoemission spectroscopy

    Full text link
    Image symmetrization is an effective strategy to correct symmetry distortion in experimental data for which symmetry is essential in the subsequent analysis. In the process, a coordinate transform, the symmetrization transform, is required to undo the distortion. The transform may be determined by image registration (i.e. alignment) with symmetry constraints imposed in the registration target and in the iterative parameter tuning, which we call symmetry-guided registration. An example use case of image symmetrization is found in electronic band structure mapping by multidimensional photoemission spectroscopy, which employs a 3D time-of-flight detector to measure electrons sorted into the momentum (kxk_x, kyk_y) and energy (EE) coordinates. In reality, imperfect instrument design, sample geometry and experimental settings cause distortion of the photoelectron trajectories and, therefore, the symmetry in the measured band structure, which hinders the full understanding and use of the volumetric datasets. We demonstrate that symmetry-guided registration can correct the symmetry distortion in the momentum-resolved photoemission patterns. Using proposed symmetry metrics, we show quantitatively that the iterative approach to symmetrization outperforms its non-iterative counterpart in the restored symmetry of the outcome while preserving the average shape of the photoemission pattern. Our approach is generalizable to distortion corrections in different types of symmetries and should also find applications in other experimental methods that produce images with similar features

    Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe2_2

    Full text link
    We investigate the interactions of photoexcited carriers with lattice vibrations in thin films of the layered transition metal dichalcogenide (TMDC) WSe2_2. Employing femtosecond electron diffraction with monocrystalline samples and first principle density functional theory calculations, we obtain a momentum-resolved picture of the energy-transfer from excited electrons to phonons. The measured momentum-dependent phonon population dynamics are compared to first principle calculations of the phonon linewidth and can be rationalized in terms of electronic phase-space arguments. The relaxation of excited states in the conduction band is dominated by intervalley scattering between ÎŁ\Sigma valleys and the emission of zone-boundary phonons. Transiently, the momentum-dependent electron-phonon coupling leads to a non-thermal phonon distribution, which, on longer timescales, relaxes to a thermal distribution via electron-phonon and phonon-phonon collisions. Our results constitute a basis for monitoring and predicting out of equilibrium electrical and thermal transport properties for nanoscale applications of TMDCs

    On the Role of Nuclear Motion in Singlet Exciton Fission: The Case of Single-Crystal Pentacene

    Get PDF
    Singlet exciton fission (SF), the formation of two triplet excitons from one singlet exciton, involves electronic, nuclear, and spin degrees of freedom as well as their couplings. Despite almost 60 years of research on this process, a complete microscopic understanding is still missing. One important open question concerns the role of nuclear motion in SF. In this perspective, recent results on the exciton dynamics are related to the structural dynamics of single-crystal pentacene and how they provide insights into that open question is shown. To probe the electronic dynamics, orbital-resolved measurements of the electronic structure are carried out using time- and angle-resolved photoemission spectroscopy. With femtosecond electron diffraction and with ab initio computations, the complementary nuclear dynamics is tracked. The results from both techniques are summarized, and how they relate to each other is discussed. Then, remaining open questions are outlined and potential routes are identified to tackle them, hopefully guiding future studies

    Time-Domain Separation of Optical Properties From Structural Transitions in Resonantly Bonded Materials

    Get PDF
    The extreme electro-optical contrast between crystalline and amorphous states in phase change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise due to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a unique combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 femtoseconds due to a rapid depletion of electrons from resonantly-bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2 ps time constant. The optical changes are an order-of-magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes

    Photoinduced ultrafast transition of the local correlated structure in chalcogenide phase-change materials

    Get PDF
    Revealing the bonding and time-evolving atomic dynamics in functional materials with complex lattice structures can update the fundamental knowledge on rich physics therein, and also help to manipulate the material properties as desired. As the most prototypical chalcogenide phase change material, Ge2Sb2Te5 has been widely used in optical data storage and non-volatile electric memory due to the fast switching speed and the low energy consumption. However, the basic understanding of the structural dynamics on the atomic scale is still not clear. Using femtosecond electron diffraction, structure factor calculation and TDDFT-MD simulation, we reveal the photoinduced ultrafast transition of the local correlated structure in the averaged rock-salt phase of Ge2Sb2Te5. The randomly oriented Peierls distortion among unit cells in the averaged rock-salt phase of Ge2Sb2Te5 is termed as local correlated structures. The ultrafast suppression of the local Peierls distortions in individual unit cell gives rise to a local structure change from the rhombohedral to the cubic geometry within ~ 0.3 ps. In addition, the impact of the carrier relaxation and the large amount of vacancies to the ultrafast structural response is quantified and discussed. Our work provides new microscopic insights into contributions of the local correlated structure to the transient structural and optical responses in phase change materials. Moreover, we stress the significance of femtosecond electron diffraction in revealing the local correlated structure in the subunit cell and the link between the local correlated structure and physical properties in functional materials with complex microstructures

    A machine learning route between band mapping and band structure

    Get PDF
    The electronic band structure (BS) of solid state materials imprints the multidimensional and multi-valued functional relations between energy and momenta of periodically confined electrons. Photoemission spectroscopy is a powerful tool for its comprehensive characterization. A common task in photoemission band mapping is to recover the underlying quasiparticle dispersion, which we call band structure reconstruction. Traditional methods often focus on specific regions of interests yet require extensive human oversight. To cope with the growing size and scale of photoemission data, we develop a generic machine-learning approach leveraging the information within electronic structure calculations for this task. We demonstrate its capability by reconstructing all fourteen valence bands of tungsten diselenide and validate the accuracy on various synthetic data. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales in conjunction with theory, while realizing a path towards integrating band mapping data into materials science databases

    Bloch Wavefunction Reconstruction using Multidimensional Photoemission Spectroscopy

    Get PDF
    Angle-resolved spectroscopy is the most powerful technique to investigate the electronic band structure of crystalline solids. To completely characterize the electronic structure of topological materials, one needs to go beyond band structure mapping and probe the texture of the Bloch wavefunction in momentum-space, associated with Berry curvature and topological invariants. Because phase information is lost in the process of measuring photoemission intensities, retrieving the complex-valued Bloch wavefunction from photoemission data has yet remained elusive. In this Article, we introduce a novel measurement methodology and observable in extreme ultraviolet angle-resolved photoemission spectroscopy, based on continuous modulation of the ionizing radiation polarization axis. By tracking the energy- and momentum-resolved amplitude and phase of the photoemission modulation upon polarization variation, we reconstruct the Bloch wavefunction of prototypical semiconducting transition metal dichalcogenide 2H-WSe2_2 with minimal theory input. This novel experimental scheme, which is articulated around the manipulation of the photoionization transition dipole matrix element, in combination with a simple tight-binding theory, is general and can be extended to provide insights into the Bloch wavefunction of many relevant crystalline solids.Comment: 11 pages, 5 figure
    • …
    corecore